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INTRODUCTION

This report presents the theory underlying a possible solu-
tion, via adaptive noise canceling, to a cosite interference prob-
lem encountered by co-located frequency hopping radios. When two
or more such radios and their antennas are independently operated
in close proximity, i.e., in a jeep or communication shelter, a
cosite interference problem can develop. In this type of situa-
tion, the radio may not be able to meet its specified bit-error-
rate. A degraded bit error rate means that the radio receiver's
sensitivity will be degraded, which results in a decreased communi-
cations range.

This type of interference problem is caused by the transmit-
ter's strong signal being too close to the frequency of the de-
sired, weaker signal, trying to be received. The difference in
power levels between the strong interfering transmitter signal at
the receiver input and the minimum signal the receiver is capable
of detecting could be in excess of 130 dB. For more details on a
typical cosite scenario (signal and interfering power levels,
frequency separation, required suppression, etc.) see Reference 18.

The receiver may not be able to provide the entire 130 dB of
interference rejection filtering needed at the transmitter frequen-
cy. Therefore, an external applique capable of supplying the
additional filtering may be required. An Adaptive Noise Canceler
with a single input is one possible way of providing the additional
filtering required.

Adaptive noise cancelers are not limited to separating narrow-

\
band signals that are close in frequency, i.e., they are not
|




limited in application to just frequency hopping radios. A partic-
-ular type of adaptive noise canceler known as an Adaptive Line
Enhancer (ALE) it capable of separating narrow-band, deterministic
signals from random wide=band signals (e.g., it is capable of
protecting a weak wide-band, direct sequence spread spectrum signal
from a strong, interfering, narrow-band signal).

Initially, the theoretical steady-state performance of both an
adaptive noise canceler with a single input and an adaptive line
enhancer will be described by assuming that the adaptive process
has "converged" (i.e., the tap filter weights are no longer chang-
ing). These adaptive filters can then be approximated by and
understood as Wiener filters.

A Wiener filter is essentially a transversal filter that
produces an optimum output in a minimum mean square sense. A
Wiener filter is shown in Figure 1. The output of a transversal
filter is subtracted from a "desired" response, d, that is similar
to but not exactly the same as the signal to be detected. The
Wiener weights of the transversal filter are designed to minimize
the mean square exrror = E [ (d -_g Wi Xk_i)z] at the output of
the summer. When the Wiener weiéggs are used, the transversal
filter gives an optimum or best estimate of the true signal value
(the signal that d, the desired response, is similar to).

In an effort to explain how an adaptive noise canceler with
single input and an ALE actually work, the functional relation-
ship between the optimal or Wiener PTF weight values (and hence
the PTF frequency response) and the interfering and intended signal

are developed in much more detail than is found in textbooks or
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review articles. Building on this analytical foundation is then
shown why:

1. For the case of a weak narrow-band intended signal versus
a strong narrow-band interferer, the frequency response of the PTF
within an adaptive noise canceler with single input is dominated or
-controlled by the strong interfering signal. This results in a PTF
passband and an adaptive noise canceler notch around the interfer-
ing frequency.

2. For the case of either a weak random wide-band intended
signal versus a strong narrow-band interferer or the case of a weak
narrow—-band intended signal versus a strong random wide-band inter-
ferer, the frequency response of the PTF in an ALE is determined by
the narrow-band signal. This results in a PTF passband around the
narrow-band frequency and a notch in the ALE output at this same
narrow-band frequency.

After the steady-state performance of the subject adaptive
filters has been described, three different adaptive algorithms
(Differential Steepest Descent, Least Mean Square, and Random
Search) are introduced. These algorithms describe how the adaptive
filter tap weights must be iteratively modified in order to ap-
proach a "steady-state" condition.

Finally, a SAW device implementation of a PIF that could be
used in building an adaptive noise canceler with single input or an
ALE is described. Performance levels (maximum input power, inter-

ferences suppression, and switching speed) are given in order to

illustrate its capabilities.
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ADAPTIVE NOISE CANCELING

An Adaptive Noise Canceler as shown in Figure 2 works as
follows:

"A signal is transmitted over a channel to a sensor that
receives the signal plus an uncorrelated noise Ny. The combined
signal and noise S + Ny form the primary input to the canceler. A
second sensor receives a noise Nj, which is uncorrelated with the
signal but correlated in some unknown way with the noise N,. This
sensor provides the reference input to the canceler: The noise N;
Is filtered to produce an output Y that is a close replica of Ng:.
This output is subtracted from the primary input S + N, to produce
the system output, S + Ng - Y."l

The output of the canceler is used to modify, via an appro-
priate adaptive algorithm, the frequency response of the adaptive
filter.

The adaptive filter will usually be implemented as a program-
mable transversal filter (PTF) (see Figure 3). A transversad
filter is the preferred implementation because:

1. It is one of the simplest filter structures. The filter
output is simply the sum of delayed and scaled inputs.

2. There is no feedback from the taps to the input.

3. It is stable. Since there is no feedback, a finite filter
input produces a finite filter output.

4. It has a linear phase characteristic, i.e., it produces a
phase shift that is linearly proportional to frequency. It

can be shownl? that if a signal is to be passed through a

linear system without any resultant distortion, the overall

5
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system frequency response must have a constant amplitude
-gain characteristic over the frequency spectrum of the
input signal and its phase shift must be linear over the
same frequency spectrum. Filtering without distortion is
important for adaptive noise canceling because the adap~
tive filter must pass the interference without distortion
so that it can be subtracted (at the summer) from the
unfiltered interferer. If the adaptive filter introduces
distortion then the summer is no longer subtracting two
identical interferers.

5. There is a simple and analytically tractable relationship
between the frequency transfer function of a transversal

~ filter and its parameters (see equation 47). The complicated

nonlinear relationship between parameters and transfer func-
tion for most other filter structures makes the analysis and

calculation of adaptive algorithms much more difficult than

for transversal filters.

6. Widrow's algorithm, one of the most widely used adaptive algo-

rithms, assumes a transversal filter structure.

A PTF forms a weighted sum of delayed versions of the input
signal. It is programmable in that the weights can be changed.
Changing the weights changes the frequency transfer function of the
PTF. A PTF is identical in structure to a programmable finite
impulse response (FIR) digital filter.

The specific technology used to implement a PTF will depend on
the frequency range of interest. For VHF and UHF applications,

Surface Acoustic Wave (SAW) devices are an appropriate technology.




At these frequencies, SAW technology can give tlie appropriate
sampling rates. (intertap delay) and total delay times necessary to

implement transversal filters with the required frequency resol-

ution needed for cosite interference reduction.




ADAPTIVE NOISE CANCELING WITH A SINGLE INPUT

Before an adaptive noise canceler can be implemented, a
reference signal correlated with the interfering signal but not the
intended signal must be generated. When the interfeving signal
Ng is much stronger than the intended signal S, the reference
signal can be generated by modifying the adaptive noise canceler of
Figure 2 to give the circuit shown in Figure 4. 1In Figure 4 the
primary and reference inputs are connected together. In effect.
figure 4 assumes that the reference input is equal to the primary
input. This may at first appear contradictory. The reference
input N, ‘has to be correlated to the interference Ny, not the
signal S. But since the signal S is part of the primary input, it
‘will be part -of reference input if the reference input equals the
primary input as per Figure 4. Hence, the reference input appears
to be correlated to the signal also. When the interfering signal
Ng is much larger than the intended signal (Ny >> S), the apparent
contradiction is resolved. 1In this case the reference input Ni (N;
= S + Ny = primary input) is highly correlated with and "looks"
like the interfering signal N, (i.e., N7 = Ng).

While S is a component of Nj and therefore will correlate to a
certain extent with Ny, Ny is so much larger than S that N; will be
much more highly correlated to N, than S. So to a very good
approximation, the reference input N; is correlated to the
interference N, not the signal S. This is what was to be proved.

Tt will now be shown why the reference input must be corre-

lated to the interference and not the signal. The adaptive filter

10




induj 9jbuls & yum Jaeoue) asioN anildepy ‘v ainbidg

Houu3 3
,, ~ 1NdNI
| warus |2ON3HIdH
A | 3Audvav |
1Nd1LNo 7
CETRIE] \\
ZA
1 ON+S
_. v on I0HNOS
| V- . ) \\\ 3SION
—o—{ 7 )= — mmt_._awlé o )
1NdLNO QN indN - _EA H3IMOd /Z/ ——
o AHVIIHd N+S - LNdNI
HINIGWOD | s | -“IvNoDIS

H3IMOd




within the canceler must filter the reference input N; to produce
an -output Y that is a close replica of N,. If N; is not correlated
to*NCT i.e., if N; does not "look" somewhat like N5, then no amount
of fiitering can make Y look like N,. To prove that the reference
input (or primary input) of Figure 4 is more highly correlated to
the interference than to the signal, first note than, the reference

input -equals

(S + Ng)/J/2
where:r
S = input signal amplitude

Ng = input "noise" or interference amplitude

The factor 1//2 appears because the input power splitter is
assumed to evenly split the power associated with the signal and
interference amplitudes S and N,. Since power is proportional to
amplitude squared, reducing power by a factor of 2 means that
amplitude is reduced by /2 at each output of the input power split-
ter.

Since we are assuming that N, is much larger than s, i.e.,

Ng >> 8, it follows that (S+Ng,)//2 is more highly correlated with
N, than with S. To be more explicit, if we define? the average

cross—correlation Ry,(7) between two waveforms V,(t) and V,(t) as

Ryp(T) = lim 1 I T/2
-T/2

Tesc0 T Vi(t) V, (t+7)dt (1)

where 7 is the relative time displacement between the two wave-

forms V; and V,. Then the correlation between the reference input

and the noise input is

12




L33

: (2)
T/2 [S(£) +N,(£)

R(ref)(noise)("—) = Ny(t+1)dt

The correlation bétween the reference input and the signal input
is

(3)
~ /2[5 (£) #N, (£)
R(reficnoise) (r) 1lim 1 _ o

T-w0 T J-T/2| [o

Since by assumption Ny>>S, at 7 = 0 the dominant term in the

(t+7)dt

integrand of equation (2) for R(pef) (Noise) (0) Will be (No(t)) 2

i.e., the limit of the integral can be approximated by
o (4)
linl » T/2 No(t))2at (o)
Toco T | _ ——————"" f(Ref)(Noise)
T/2 /2
In a similar analysis, the dominant term in the integrand of
equation (3) for R(pef) (signal) (°) Will be No(t)S(t). The limit

of the integral can be approximated by

lim 1 T/2 S(£)- N(t)dt o (o) (5)
T-o0 P -T/2 \/—— - ~ R(Ref)(Signal)
2

No >> S implies that

(No(t))2 >> Ng(t)s(t) (6)
Since (Ng(t))?//Z is the approximate integrand of R (Ref) (Noise)(o)
and No(t) S(t)//2 is the approximate integrand of
R(Ref) (Noise) (0},

equations (4) and (5) and inequality (6) imply that

R(Ret) (Noise) (*) >> R(gef) (signa1) (*) (7)

13




In other words inequality (7) indicates that the reference
signal is much more highly correlated with the noise than with the
‘signal, as was to be demonstrated. This means that the reference
signal "looks" more like the interference, N,, than the signal S.

As the adaptive algorithm iterates, it will cause the adap-
tive filter to form a bandpass around the interfering frequency,
FNO. If the PTF has been properly designed, then the resulting
bandpass filter will "pass" FNO the interfering frequency and
"reject" the intended signal frequency. Then the output of the
adaptive filter (the filtered reference signal) will 'look" even
more like No//2 than the input signal. When this output is sub-
tracted from (S + Ng)//2, at the summer, a signal very similar to
S//5 will remain. The interference has been canceled. The circuit

shown in Figure 3 does indeed behave as an adaptive noise canceler.

14




ADAPTIVE LINE ENHANCER

The discussion up to this point was only concerned about
protecting a narrow-band s!qnal from narrow-band interference. It
is also desirable to be z3!. ~u separate narrow-band signals from
random broad-band signa. ¢ waveforms encountered ir. communica-
tions systems are in many ¢ .ses unpredictable. A random signal is
often an appropriate model ..r¢ a real signal. The following dis-
cussion will deal with seperating both:

1. A weak random broad-band signal from a strong narrow-band
interferer, and

2. A weak narrow-band signal from a strong random broad-band
interferer.

An Adaptive Line Enhancer (ALE) illustsated in Figure 5 is one
possible method of performing this sigral separation. An adaptive
line enhancer di: fers from an "Adaptive Noise Canceler with &
single input" as shown in Figure 4 in that, a delay has been intro-
duced preceding the adaptive filter. In order to understand how an

ALE works, a more detailed analysis of Figure 4 will be necessary.

15
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ANALYSIS OF AN ADAPTIVE NOISE CANCELER WITH A SINGLE INPUT

After the adaptive process has converged, the performance of
the filter in the adaptive noise canceler of Figure 4 can be ap-

proximated by a Wiener filter. This means that after convergence

the adaptive algorithm has produced (by adjusting the adaptive
filter frequency response) a system output ((S+N°)//7) - Y, that is
a best fit in a minimum mean square error sense to S//2. In other
words, the mean square error is minimized, i.e., the average value

taken over a large number of samples of,

(system output -~ intended signal input)?
J2

S+Ng s
- Y) —_——
JZz JZ

(

is a minimum. In effect, the adaptive algorithm is minimizing the
" interference power at the adaptive noise canceler output by causing
(via tap weight adjustment) the adaptive filter output Y to "look"
like the interference Ng.

The adaptive filter frequency response can be controlled by
varying its tap weights. The optimal weight vector W*, the Wiener

weight vector, that minimizes the mean squared system output is

given by 5
wx = R-1p (8)
where R = Input Correlation Matrix

and

P = Cross-Correlation Column Vector

17
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The symbol E means that the matrix R is composed of the ex-
pected or mean valués of the indicated products of adaptive filter
tap outputs (see Figure 3). The main diagonal terms of R are the
mean squares of the tap outputs. The off-diagonal terms are the
‘cross-correlation among the tap outputs.

P = E [ dyXy, dxXk-1, dxXx-2, ---, 9kXk-n ] (10):
where dj is the desired response at "time" k. When Xy is the
reference input to the adaptive noise canceler of Figure 4, dy is

the primary input. In terms of Figure 4's notation:

J2 (11)

Xk=S+NO

/2 (12)

The components of the vector P are the cross-correlations
‘between the desired response and the adaptive filter tap outputs.

Equations 8, 9, and 10 can be used to investigate the influ-
ence of the interferer and the intended signal on the optimal
weight vector W*x., Of particular interest are those conditions
under which W* and hence the frequency response of the adaptive

filter are only a function of the interfering signal. This is what

18




will allow the adaptive filter to form a '"bandpass" around the

where:

where:

then

9). is E'txkri .

Xk

: Xk-i

Xk-j

sample k.

tive filter is

Xk = S + No

J2

S

signal

interferer and reject the intended signal.
A typical element of the autocorrelation matrix (equation

‘Xk-j]' i.e., Rij = E [Xk-i - Xk-4]
signal input to the adaptive filter at time k or at

total signal at the ith tap of the adaptive filter.
total signal at the jth tap of the adaptive filter.
k is a time index, not necessarily a unit of time.

If we assume, as per Figure 4, that the input to the adap-

Ny = noise or interference

E [Xk-i = Xk—j)

E [Xk-i © Xx-j]

E [xk-i . Xk—j]

1/2 E [(S+Ng)g-i * (S+Ng)k-4] (13)
1/2 B [(Sk-i * Noy_;) * (Sk-3 + Noy_3)]

1/2 (E [(Sk-i - Sk-j) (14)
+ (S5 - Nok—j)

* MNoy_; 7 Sk=3) + (Nop 5 = Noy )]

1/2 (E [Sk-i - Sk-j] * E [Sk-i -Noy_41 (15)
+ E [Nok_i- Sk~j

+E (Noy_; * Noy_51)

Interference occurs when the noise is much larger than the intended

signal, i.e., N

o]

>> S.

We shall therefore assume that:




Ng >> S (16)

The last term in equation 15 which is a function of the inter-
ference but not the intended signal will usually be the largest
term in the equation since all other terms are expected values of
products containing S- (the intended signal). Clearly if the inter-
ference is greater than the signal (Ng >> S), then N02 > No S > s2
and in most cases

E (Noy s * Noy ]

will ‘be larger than either
E [Sk-i + Sg=51,
E [Sk-i * Noy_31s oF
E (Noy_; * Sk-jl-
It is possible for N

and N to be 90 degrees out of

Ok-i Ok~j
phase (for narrow-band deterministic interference). In this case,
"E(Nok_i . NQk—j) might not be larger than the other terms in equa-

tion 15 and the sum of all four terms would be of order NgS which
is nmuch smaller than Noz. Every element of the autocorrelation
matrix R is either dominated by the interference Ny or is small
compared to it. If the autocorrelation matrix R is dominated by
the interference, it can be shown that R™! will also be dominated
by the interference.

The Wiener weight vector W* that minimizes the mean square
adaptive noise canceler output is given by equation 8. The preced-
ing analysis has shown that R and hence R™! are dominated by or are
primarily functions of the interfering signal. If it can be shown
that P the cross-correlation column vector is also dominated by the

interfering signal, then equation 8 will imply that the Wiener

20




weight vector W* is primarily a function of the interference. Aas
mentioned previously, this primary dependence of W* on the inter-
fering signal is what will allow the adaptive filter to form a
bandpass around the interferer: pass the interferer and reject the
intended signal.

The cross-correlation vector P will now be investigated.

From equations 10, 11, and 12:

P=E [dk Xk' dk Xk—l, dk Xk—Z, cee, dk Xk-nl (10).
dy = Sy + N
k= "k 7 Tog (11)
J2
Xk = Sk + No, (12)
JZ
also
Zv_3 = Sy_3 + N .
k-1 k-1 7 Fop_j
(17)
J2
A typical element of P is:
P; = E [dg - Xg-il (18)
where i can vary between O and n.
’ Substituting equations 11 and 12 into equation 18 gives:
. Pi = 1/2 E {dy + Xk-j] = E [(Sk + Noy ) (Sk-i + Noy _.)] (19)
= 1/2 E [(Sk Sk-j) *+ (Sk oy ;) + (Mg, Sk-j) +
Pj = 1/2 (E (SkSk-i] + E [Splo, ;] + E(NgSk-j} + (20)




The analysis of equation: 20 is now very similar to the analy-
sis of -equation 15. Since it is assumed that Ny >> S, the last

term of the equation;

E Noy * Noy_;)

will usually be the largest term of the equation because all the
other terms are -expected values of products containing S. Even-
tually the same conclusion will be reached about the cross-corre-
lation vector P that was arrived at in reference to the autocorrel-
ation matrix R, that is, every element of P is either dominated by
No -or: small compared to it.

Since P and R™! are dominated by No, it follows from equation
8 that W*, the optimal weight vector, will also be dominated by the
interference. The inteference "controls" the optimal weights.

This is the -conclusion that was to be established.

The adaptive nhoise canceler circuit of Figure 4 works when
both the iatended signal and the interferer are narrow-band. When
the strong interfering input to the circuit is a random wide-band
signal, the canceler will not be able to filter it out. The PTF
will not be able to reject the weak narrow-band intended signal and
pass the random wide-band interferer (assuming they overlap in
frequency) as was done in the narrow-band interferer vs. narrow-
band intended signal case previously discussed.

If the PTF could put a passband around the narrow-band intend-
ed signal and filter out most of the strong random wide-band inter-
ferer, then signal separation could be achieved. 1In effect, this

means that the narrow-band intended signal would control the PTF
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frequency response as opposed to the narrow-band interferer vs.

narrow-band intended signal case where the interference dominated

and controlled & . PTF frequency response.

If an appropriate delay is placed in front of the PTF in the
adaptive noise canceler, as shown in Figure 5, the resulting cir-
cuit is known as an Adaptive Line Enhancer (ALE). This circuit is
capable of putting a passband around a narrow-band intended signal
in the presence of a strong wide-band random signal. As a result,
it is capable of separating these two types of signals. 1In the

following section it will be shown why an ALE works this way.
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ANALYSTS OF AN ADAPTIVE LINE ENHANCER

Equation 8, will be used to analyze the adaptive line
enhancer shown in Figure 5. The analysis will show that the ALE

can be used to separate the following:

ASE 1 - A weak, random broad-band signal from a strong

narrow-band interferer.

CASE 2 ~ A weak, narrow-band signal from a strong random,

broad-band interferer.

For both cases:

'S = weak intended signal
N, = strong interferer or "noise" where Ny >> S
CASE 1
S = weak, random, broad-band signal

=
o
I

strong, narrow-band interferer

Equation 10 for P the cross-correlation vector has as its
components the cross-correlations between the desired response (dy)
and the adaptive filter tap outputs (Xy Xyk-3,.... Xg-p). dg is
the input to the positive terminal of the second or output summer

as shown in Figure 5.
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Assuming that the input power is evenly split between the
primary and referernce (upper and lower) branches of the ALE

circuit:

dy = Sk + Nok
T (21)
JS2
Where Sy and»Nok indicate that each of these signals is sampled at
the time corréspﬁnding,to time index k.
The amplitude that will be the input to the delay element
in the lower branch of the ALE is also (Sy + Nok)//—; The delayed
output is denoted by (DSy +-Dka)/J§,—where "p" indicates that the:
signal has been delayed by delta (A) units of time. Thus

(DSy + DNok)/Ji is the input to the adaptive filter, i.e.,
Xk = (DS + DN ) / /2 (22)
The signal on the first tap of the adaptive filter is
Xk-1 = (DSg-3 + DNoy ) / J2 (23)

This means that the signal out of the first tap introduces a time
delay of one sample period, i.e., Sy_j and Nok-l denote Sy and

NOk delayed by one sample period. The signal amplitude on the ith
tap is Xy-j

Xk-i = (DSk-j + DNg, _.) / J2 (24)

A typical component of the cross-correlation vector P, such

as the ith component, is E [dy Xk-j]. Equations 21 and 24 for dy

and Xk.-j imply that:
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(25)
'S +N DS_;+ DN ~
EWMH-E“H%)'(bﬁ

L 2

= 1/2 E [Sk, . Dsk“i + Sk . DNOk"i + Nok . DSk..i + Nok 4 DNOK“'i

"k{) .

]

E {dy - Xk-i] = /2 (E [Sk » DSk.j] + E [Sk "DNok_i] (26)

+ E (Ng + DSk_j] + E (Ng, + DNo, 1)

The purpose of introducing a delay element into an -adaptive

noise canceler to form an ALE is to decorrelate the wide-band

component of the input from itself. If the delay time delta (4) is

chosen larger than the autocorrelation time of the wide-band

signal, then the correlation between the delayed and the original

wide-band component will be zero by definition .of autocorrelation

time. For Case 1, S is the weak random broad-band intended signal.
If the delay time A is larger than the autocorrelation time of S,
then:

E [Sk * DSg-y] =0 (27)
for all i or equivalently for all taps of the adaptive filter. The
left side of equation 27 is just the first term of equation 26.

The analysis now becomes very similar to the analysis of the
cross-correlation vector of an adaptive noise canceler. Since it
is assumed that the noise or narrow-band interference N, is much
larger than the signal S (Ng >> §), this implies that in most cases
the last term of equation 26 will be much larger than either of the

other two non-zero terms, i.e.,

E [No, + DNo, _,] > E [Sk - DNo,_.] (28)
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and

E [Nok * DNgy ;1 > E [Ng, * DSk=j] (29)

It is possible, however that N, and DN may be 90 degrees out of

Ok=i

phase. 1In this case,

E [Noj . DNoy _.]

might not be larger than the other terms and inequalities 28 and 29

‘would not be valid. But then the sum of all three non-zero terms

would be of order NoS5, which is much smaller than NOZ. Therefore,

every component of the cross-correlation vector P is either domi=
nated by the narrow-band interference N,, via inequalities 28 and
29 and equation 26 or is small compared to No-

A typical element of the autocorrelation matrix for an ALE is

E (Xk-i * Xk-j) = /2 E ((DSk_j + DNg, .) + (DSk-j + DN )1 (30)

Ok-1i

E [Xk-i * Xg-j) = 1/2 (E [DSk.j - DSg_j] + '
E [DSy-j ° DNok_j] + E (DNo, _; * DSk-5] + (31)
E [DNoy _; * DNoy 1)

Equation 31 is very similar to equation 15 for a typical ele-
ment of the autocorrelation function of an adaptive noise canceler
with a single input. The only difference is the delay. The analy-~
sis of equation 31 is exactly the same as equation 15. Since the
interference N, is much larger than the intended signal, every
element of the autocorrelation matrix R for an ALE is either
dominated by the narrow-band interference or is small compared to
it. This will also be true for the inverse, R™l. It was previ-
ously shown that this is also true for the ALE cross-correlation

matrix P. Therefore equation 8 for the optimal weight vector

W* = R™1p implies that the weight vector that the adaptive filter
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“converges" to is primarily a function of the interfering narrow-
band signal, Ng.

Thi’s is why the adaptive filter in an ALE puts a "bandpass"
around the interferer. For -all practical purpcses it never "sees"
{via equations 8, 9, and 10 for W%, R™! and P, respectively) the
intended random wide-band signal.

in‘other—words, for Case 1, (a weak random broad-band signal
ahd a strong narrow-band interferer) it has been shown that R and P
ﬁqiveﬁ-by equations 9 and 10, respectively) are primarily functions
6f, or are dominated by N, Equation 8 then implies that the
optimum weight vector W* is dominated by N,. Equation 47 (see Case

2 .analysis) gives the frequency response H(w) of the PTF as:

n N .
H(w) = £ Wy e JOA(-1) (47)
i=2
where:
H(w) = frequency transfer function

W = frequency

A

intertap delay

n Number of taps

j=J/1
The frequency response H(w) is a function of the weights W;. The
optimum weight vector W* is primarily a function of N, the narrow-
band interferer. A consequence of the domination of W* by N, is
that when W* is substituted into equation 47, H(w) develops a peak
or maxima around the frequency of the narrow-band signal. It is in

this sense that the PTF frequency response never "sees" the intend-

ed weak random broad-band signal.
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Let S = weak narrow=band intended signal

No

strong wide-band random interferer

Equation 8, Wx = R™L P, was aga.in used to analyze the ALE.
‘The ith component of the cross-correlation vector P is still given
by equation 26. Now N,, the strong interferer, is a wide-band
random sighal. It is again assumed that the delay time A is chosen
larger than the autocorrelation time of the wide-band random
‘signal. As a result, correlation between the delayed and original
wide=band randbmvsignal will be zero, i.e.,

E [Ny, * DN = 0 (32)

Ox-!

Thus, for case 2, E [Nok . DNOk-i] is not the dominant term
in equation 26 that it was for case 1 and in fact it makes no
contribution to equation 26.

Thus, by the introduction of an appropriate delay time A, the
influence that E [NOk . Nok-i] had in equation 20 for the cross-
correlation matrix element for an adaptive noise canceler with
single input becomes nullified. Since the interference N, is
assumed to be much larger than the intended signal S,

E [Noy * Noyp_;]
for the adaptive noise canceler with single input or
E [No) + DNo, _.]
for an ALE has the potential to be the dominant term in equation 20

or 26, respectively. The elimination of the left-hand side of

equation 32 is the major effect that the time delay in the ALE

produces.




The interferer can only contribute to the cross-correlation.

element via the second and third terms of equation 26,
E [Sx  DNoy ;7 and E [Ng, + DSg-j]-

However, since Ny >> S, these terms will be many orders of
magnitude smaller than E [(Noy_; * Noyp_;] oF E [NokeaNok_i], where
the intertap delay A is not chosen long enough to decorrelate*NQ,
In the ideal case, if there is no correlation between the signal S
and the interference, then both E [S) - DNok—i] and E [Nok + DSy-i]
wili ecual zero. Then in equation 26 only the first term,

E [Sk + DSk-il, will be non-zero. This term is a function of only
the intended signal, not the interference. So if a weak narrow-
band intended sighal and a strong wide-band random interference are
uncorrelated, the cross-correlation vector is only a function of
the intended signal, not the interference.

Thus, for an ALE an appropriate time delay will minimize the
-effect of the wide-band random interference on the cross-correla-
tion vector P. Since W* = R™1P, it is necessary to know how inter-
ference and the time delay affect R, the autocorrelation matrix and
its inverse R™l. A typical element of the autocorrelation matrix
for an ALE is given by equations 30 and 31. The last term in
equation 31 is potentially the largest term since Ny >> S. This
term gives the major effect of the interfering signal on the auto-
correlation matrix.

The conditions under which the last term in equation 31,

E [DNQk—i . DNOk-j] is zero or relatively small will now be inves-

tigated.
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Assume that the random wide-band interference is white noise,
i.e., with a power spectral density that is constant (say C) for
all frequencies; It can be shown3 that the Fourier transform of
the power spectral density of this white noise,the autocorrelation
function R (7), is the same constant times a delta function

§(7r) i.e. R(7) = C&(1). (33)
‘Equation 33 implies that R(r) is equal to zero except for 7 = 0.
This means that for a white noise signal N(t), N(t) and N(t + 1)
are uncorrelated and independent no matter how small 7 becomes.

The fourth term of equation 31, E [DNOk—i . DNok_j], is basi-
cally the autocorrelation of the delayed interference input (DNok)
to the adaptive filter of the ALE. The correlation is performed
between the ith and jth taps of the filter. It correlates the
interference output that appears at the ith and jth taps using a
correlation delay that is equal to the propagation delay between
the two taps.

If it is assumed that N, is white noise, then equation 33

implies that

E [DNgy _; * DNgy 41 =0 when i ¥ j (34)
and that
E [DNg, . ° DNok_j] =C when i = 3j (35)

If it is further assumed that the signal S and the interference Ng,
are uncorrelated, then the second and third terms of equation 31
are zero for all values of i and j.

Thus, for white noise interference, the autocorrelation
matrix given by equation 31 is as follows:

for the off diagonal elements (i F j) equation 34 implies that:
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Ryj = 1/2 E [DSg_j + DSk-j] (36)
for the diagonal elements (i=j):

?R}i = E [Xg-j * Xk-i] = 1/2 (E [DSk.j + DSk-jl (37)
Substituting equation 35 into equation 37 implies:

Rii = 1/2 ( E [DSg-j - DSk-i] + C) (38)
and since N, >> S,

E [DNo, ; * DNlei] >> F [DSg_j + DSk-jl (39)
Inequality 39 when substituted into either equation 37 or 38

implies that
Rij = C/2 (APPROXTIMATELY) (40)

It follows from inequality 39 and equation 40 that the off
diagonal elements (given by equation 36) are small compared to

the diagonal elements. Expressed as an inequality;

Rij >> Rjj (41)
Inequality 41 and equation 40 imply that for white noise
interference, the autocorrelation matrix R can be approximated by
a matrix that is both diagonal and scalar (a scalar matrix is a

diagonal matrix whose diagonal elements are all equal)

C/2,0, .. ,0
0,8/2,0,.....,0

R = . . . (42)
0 .. c/2
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If a matrix is scalar, its inverse will also be scalar. So

fR"I=gan*be expressed as follows?

" ]
KO,..oo.n. 10
0,K,0,c0000,0

R—l = o .- . (43)
K.

where K is some function of C, the power spectral density of the
wide-band random interferar, K can be factored out of equa-

tion 43 to give:

1
0,1,0,.....,0

R°l =K ) ) (44)

o
e e e e

The matrix in equation 44 is the identity matrix I. Equation 44
now becomes:

R°L = k1 (43)
Where K is a scalar or number not a matrix.

Substituting equation 45 into equation 8, Wx = R™1 P, for the
optimal weight vector of the adaptive filter gives

Wx = KIP = KP (46)

since IP=P.
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Equation 46 can be used to investigate the frequency transfer
function of the adaptive filter. The adaptive filter is a tapped
delay line or transversal filter. The frequency response of a
tapped delay can be shown? to be

1l

oS

H(w) =
i

where:
H(w) = frequency transfer function
w = frequency
A = intertap delay
n = number of taps
J/1

Substituting equation 46 into equation 47 gives:

3

n ., . n - .
H(w) = & Wye~J0di = I Kpje Judi (48)
i=1 1=1

n —
H(w) = Kiﬁlpie'ijl (49)

Equation 49 indicates that K (and hence C) does not affect
the relative frequency response, i.e.,
n . . . .
H () K £ PjeJ(01)81 pje~J(Uy) Al

i=1 i=1 7
= = (50)

no

n . : n . .
H (5) K T Pje”J(vz)Al T pje”J(wp)bi
i=1 i=1

K is just a multiplicative or scale factor in equation 49. It
cannot affect the relative frequency response, H(w,)/H(wj3),
because it cancels out in equation 50. Thus, for a white noise

interferer uncorrelated with the signal, the use of the optimal
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weights Wx for the adaptive filter in the ALE causes the relative
frequency response to be determined by the cross-correlation vector
P. However, it was previously shown that for an ALE, an appropri-
ate time delay will minimize or possibly eliminate the effect of
the wide-band random interference on the cross-correlation vector
P. P will be determined by S, the weak narrow-band signal (assum-
ing that the signal S and the interference n, are uncorrelated).
The signal S will determine the relative frequency response (via
equation 50), i.e., S will determine the frequency response up to a
scale factor. The interferer Ny will determine the scale factor K
(K is a function of C the power spectral density of Ng) -

Therefore, for white noise interference, it is the weak
narrow-band intended signal that determines what frequencies are
passed or rejected by the adaptive filter. This is why the adap-
tive filter (for Case 2) can put a "bandpass" around the signal §
and later subtract it from S + N, at the summer.

The key assumption in the above analysis was that the wide-
band random interferer was white noise. White noise uncorrelated
with the signal implies that R (via equation 42) and rR™1 (via
equations 43 and 44) are scalar matrices. The scalar matrix R-1
implies equation 46: W* = KP. Equation 46 implies that the
relative frequency response is determined by P. But the correla-
tion vector P is determined by the signal S. Thus it was concluded
that the relative frequency response is determined by the intended
narrow-band signal.

It will now be determined whether or not the conclusion, that

the relative frequency response of the adaptive filter is deter-

35




mined by the intended narrow-band signal, is still valid if the
wide-band random interferer is not white noise. If RY and R™1
still remain scalar matrices, then the conclusion will remain
valid. A typical element of the autocorrelation matrix R for an
ALE is given by equation 31. If the noise and the signal are

uncorrelated equation 31 becomes:
—Rij = 1/2 (B (DSg_j * DSk-j)] + E [DNOk_i . DNok_j]) (51)

If it is assumed that Ny >> S then the diagonal terms of equa-

tion 51 are given by

Rijj; = 1/2 E [DN DN (52)

ok-i = PNog-y!

Rji 1s a measure of the energy at tap i of the adaptive: filter.
Assuming that the same energy appears at each tap, then Ryj will

have the same value for all i, i.e.,

Rfll = R22 S el = RNN (53)
The off-diagonal elements- of R are still given by equation

51 since Ng>>S. The first terms of equation 51 will be small.

compared to the diagonal eleménts, i.e.,

E [DNgy_; * DNgy ;] >> E [DSk-j * DSg-j] (54)
If the second term of equation 51 is also small compared

to the diagonal elements, i.e., if:

. . . >> . . _n
E [DN°k-1 DNOk-l] E [DNok_l DNy J] (55)
then equations 51, 52, 53, 54, and 55 imply that the autocorrela-

tion matrix R can be approximated by a scalar matrix.
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Therefore, the conclusion that the relative frequency response is
determined by the intended narrow-band signal remains valid.

The key assumption above was inequality 55. It shows that the
delayed random wide~band interference Ny must significantly decor-
relate between the ith and jth taps of the adaptive filter for R to
be approximated by a scalar matrix. Since i and j can take on any
values, except i = j, the delayed random wide-band interference
must significantly decorrelate over one intertap delay time in
order for R to look like a scalar matrix. This will insure that
the relative frequency response is determined by the intended
signal and hence that the ALE will put a "bandpass" around the
intended signal.

It is important to note that for both case 1 (S = weak random
wide-band intended signal, N, = strong narrow-band inFerferer) and
case 2 (S = weak narrow-band intended signal, Ny = strong random
wide-band interferer) it is the narrow-band signal that the adap-
tive filter puts a "passband" around. Intuitively this makes
sense. A narrow-band deterministic signal can be subtracted from
the sum of the same narrow-band deterministic signal and a wide-
band random signal. The narrow-band signals can cancel out.
Subtracting a wide~band random signal from that same sum will not
cancel out the wide-band random signal. Randomness will prevent

cancellation.
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MEAN SQUARE ERROR AS A PERFORMANCE MEASURE FOR
' ‘ ~ ADAPTIVE ALGORITHMS

Before adaptive algorithms can be investigated, a performance
measure or performance function for the adaptive filter must be
defineé. A very useful and well understood performance function
evaluated in this paper is Mean Square Error.

The generation of an adaptive filter error signal is illus-
trated in Figure 6. The sampled output of the adaptive filter Yy
is subtracted from a sampled desired signal response to generate
an error signal. The "desired" response will not usually be the
intended signal that is being sought to detect. If the intended
‘Signal was known there would be no need for an adaptive filter to
detect it. The "desired" response must be related to the intended
‘signal in some manner. For the case of an adaptive noise canceler
(illustrated in Figure 2) the "desired" response is tﬁe primary
input, i.e., the intended signal S plus the interference N,.

By taking the square of the adaptive filter error function

Er vi will never be negative and will therefore possess a minimum

value.

The adaptive filter should be able to work with random input
signals and random "desired" responses as well as with determin-
istic signals because communications signals are often modeled as
randoﬁ signals. This suggests that an appropriate performance
function for an adaptive filter would be the average or mean of the
squared error (denoted by E[si]).Mean square error can also be

interpreted as the average power of the error signal in Figure 5.
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The mean square error as a function of input signal, "desired"

response, and tap weights can be derived using the following defi-
nitions. The error signal ¢k at time index k is defined as:

€k = 9 - ¥k (56)
The output of the PTF is given by:

Y = Wo Xg + Wy Xgoy + Wy Xgop + oo + Wy Xpop (57)

- -

If the column vectors W and Xy are defined by

E— ~ -
Wo and Xx
"1 - Xk-1
W = Xy = .
Wy, Xk-n

then equation 57 can be expressed as the vector dot product of

- -
W and Xk :
- —
Y = WE o Xy (58)

- - -

where WT is the transpose of W, i.e., Wl is a row vector.

Equation 58 can also be expressed as:

- -
Substituting equations 58 and 59 into equation 56 gives:

-p

g = dg - XkT + Wo=dp - WD« Xy (60)
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Now square -equation 60 to get:

e2 = (dg - KT + W) (d - W . Xp) (61)
e2 = a2 - ap W oxp - dp T oW (T W (W - xy)
e2 =d2 o+ (WT . xp) (T W) -2 a (xTyg - W) (62)

The second term of equation 62 can be written as

- - - -

WT v X)) o (XD W) = wWT oo X % T) W (63)

-t -—

where [Xy ka] is a matrix given by:

2
X, ¥*x¥k-1 , XxXk-2 .-+, Xk¥k-n
2
Xx-1%Xk, £k . ¥k-1Xk-2,--+ , Xk-1¥k-n
Xy XyTI) = . (64)
‘ 2
Xk-n¥k, Xk-n¥k-1 , Xk-n¥k-2,--+ , k-pn
i)
¥
Substituting equation 63 into equation 62 gives:
2— 2 - - - -+ - -
e = di + WP o (X XpT) W -2 dy (XK T+ W) (65)

Py

If it is assumed that £y dyg and Xy are statistically stationary
(i.e., statistical characteristics are independent of time) and ;
is held constant, then taking the expected value of equation 62
over the time index k yields the following expression for mean

square error (MSE):
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- -

MSE = E [ ¢2 )= E [ da) + Wl « E [xXT) W

- 2 E [dpXkT] - W (66)

where E denotes the expected or mean or average value of the quan-

- =

tity in brackets. In equation 66; E [XpXkT) is just the input

autocorrelation matrix R (see equation 9) and E [dekT] is just

-

the cross~correlation vector P (see equation 10). Equation 66 then

becones:

MSE’=E[8}2< ] = E [di]—%-WT-RW-ZPT-W (67)

It is obvious from equation 67 or 66 that MSE is a quadratic

function of the components of the weight vector W, i.e., the compo-

-

nents of W appear in equation 67 or 66 raised either to the first

or second power. This implies that when MSE is plotted against all

the tap weights the result is a hyper paraboloid. If there are n

taps in the PTF then a plot of MSE versus tap weights yields an

(n + 1) dimensional "parabola." This plot is known as a perfor-

mance surface.

An n + 1 dimensional parabola can be thought of as an (n + 1)

dimensional "bowl". This "bowl" must be concave upward; otherwise

there would be weight settings that would result in a negative MSE
(i.e., negative average error signal power). This is impossible
with rieal physical signals. Since the MSE is a quadratic function,
this implies that there is a single point at the bottom of the MSE

performance surface "bowl." This point is the minimum MSE. The

objective of all adaptive algorithms is to drive the weights and

the resulting MSE toward this point.
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Equation 8 for the optimal weight vector W* provides a direct
method of locating the bottom of the MSE performance surface bowl.
When we assume a weight vector W = W* then the mean square error is
at its minimum. This is known as the direct or matrix inversion
algorithm. This algorithm has several severe drawbacks associated
with it:

1. If the PTF has n taps, then (n+l) (n+4) / 2 autocorrelation
and cross-correlation measurements must be made in order to deter
mine R and ;. Such measurements must be repeated whenever the
input signal statistics change with time.

2. The autocorrelation matrix must then be inverted.

3. "Implementing a direct solution requires setting weight values
with a high degree of accuracy in open loop fashion, whereas a
feedback approach provides self correction of inaccurate settings
thereby giving tolerance to hardware error."® In othér words,
because equation 8 has no feedback from the error output, highly
accurate weight values are required.

When the number of weights is large or the input data rate
(or hopping rate for frequency hopping radios) is high, then 1 and
2 above imply severe computational and time requirements on any
direct solution. The processor implementing a matrix inversion
algorithm might not be able to implement it fast enough for the
algorithm to be of any use. Because of these problems, no adaptive
algorithms that require the measurement of an autocorrelation

matrix or the computation of its inverse were investigated.
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Two types of adaptive algorithms that do not require any
krnowledge of the autocorrelation matrix are the methods of Steepest

Descent and Random Search.
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METHOD OF STEEPEST DESCENT

Before introducing the method of steepest descent for an
arbitrary number of tap weights (or equivalently an arbitrary
number of dimensions in the mean square error performance surface)
it is helpful to consider the method of steepest descent for the
simplest case: just one weight.

The one weight (univariable) performance surface, which is a
parabola, is shown in Figure 7.

The method of steepest descent does not require knowledge of

-

the autocorrelation matrix R or the cross-correlation vector P.
Since R and ; are unknown, equation 67 cannot be used to define
the MSE performance surface. But since mean square error can also
be interpreted as the average power of the error signal, MSE can be
measured.

In order to find W*, the weight that causes the MSE to be
minimized, an arbitrary weight value W, is initially assumed. The
average power of the error signal is then measured in order to
determine the MSE at W,, i.e., one point on the MSE performance
"surface" shown in Figure 7 has been located. The ability to
locate points on the MSE performance "surface" allows measurement
of the slope of the parabola at W, (the method by which the slope
is measured depends on the type of steepest descent algorithm
used).

A new weight value W; is then chosen equal to the initial

value Wy plus an increment proportional to the negative of the
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Slope at WQ
Wy = Wy + p (-slope) (68)

The point on the performance surface corresponding to W; is
lower down on the parabola than the point corresponding to W,. It
is closer to the minimum than the first point. Another new value,
W5, is then derived in the same way by measuring the slope of the
parabola at Wy, i.e.,

Wy = Wy + p (-slope) (69)

This procedure is repeated until the slope of the parabola at
the iterated point is zero. It is obvious from Figure 7 that when
the slope of the parabola is zero, then W%, the weight that causes
the MSE to be minimized, has been identified. To summarize, for a
one weight filter with a parabolic error surface, the negative of
the slope of the parabola is used to “"slide" down to the bottom of
the "bowl."

For a filter with n taps and an n + 1 dimensional hyper para-
boidal mean square error surface, the objective is still to "slide"
down the error surface to the bottom of the "bowl."

In order to identify (at any given point on the MSE surface)
the direction in which to slide, the negative gradient vector of
the MSE surface is used. The gradient of the MSE surface at a
given point on the surface gives the direction in which the MSE is
increasing fastest at that point. The negative of the gradient is
the direction in which the MSE is decreasing fastest. It points
the way to the steepest (and "fastest") descent down the MSE

"bowl." Hence the name "Method of Steepest Descent.®
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The gradient V of the MSE surface is defined as the vector

Y = d (MSE), a('MSE) ; eee., OG(MSE) (70)
W, W4 W,

i.e., each component of V is a partial derivative of the MSE with
‘respect to a given weight.

The method of steepest descent can be expressed by the fol-
'lowing- algorithm:

— -

Wiep = Wi + 0 (=Vg) (71)

Wy = the weight vector at the kth iteration, i.e., the

set of tap weights used on the kth iteration.

W41 = the weight vector at the k+lth iteration

Vx = the gradient at the kth iteration point on the MSE per-
- formance "surface"

12 = a constant that regulates the step or increment size of

the weight vector change. It determines how far to
"slide" down the performance surface before another
iteration is performed.

Equation 71 is a direct generalization of the one dimensional case

(equations 68 and 69). For any given set of tap weights,

Wy, a new set Wy;q, can be computed (via equation 71) that yields a

smaller mean square error. In order to use equation 71 it must be

possible to compute the gradient Vy at the kth iteration point.

The manner in which the gradient is computed depends on the spe-

cific steepest descent algorithm that is used. All steepest de-

scent algorithms, however, use the fact that mean square error can
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be—interpreted as the average power of the error signal to locate
points on the MSE performance surface and to ultimately use these
points to compute the gradient. To summarize equation 71, the
defining equation for the method of steepest descent, allows an
iterative approach to the optimal weight vector ;* without any
knowledge of the autocorrelation matrix R or the cross-correlation

vector P. The only prerequisite for using equation 71 is the

abilkity to measure average error signal power.

49




GRADIEn! ESTIMATION

The two most widely used methods for estimating the gradient
at a given point on the mean square error surface s-e: the Dif-
ferential Steepest Descent (DSD) algorithm and Widruw's Least Mean

Square (LMS) algorithm.
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DIFFERENTIAL STEEPEST DESCENT ALGORITHM

In the DSD algorithm, each of the partial derivatives in
equation 70 are estimated by the method of symmetric differences
illustrated in Figure 8. To calculate J(MSE)/dW; at a given value
of Wi = Wgjven, all the weights except W; are held constant. As
per Figure 8, the mean square error is ''measured" at
Wi = Wgiven + 6 and at Wy = Wgiyen - 6. The slope of the line be-

tween the two points is then calculated via equation 72

MSE(Wgiven * 6) - MSE (Wgjven - 6) (72)

slope =
2 6

This slope is an approximation of 4(MSE) / dW; at Wi = Wgiven-

The MSE terms in equation 72 above are just estimates of the
true MSE based on measurement of the average error signal power.
There will be an error associated with each MSE measurement. This
means that 9 (MSE) / dW; given by the slope in equation 72 will have
an error associated with it. Since 6§ is small, MSE (Wgjyen * 9¢)
and MSE (Wgjyen — 6) Will be very close to each other. When the
two MSE values are subtracted, r s in equation 72, the resulting
error (on a percentage basis) becomes greatly magnified. The only
way to reduce this subtraction or slope error is to reduce the MSE
error. This is done by repeated MSE measurement at both Wgiyen *+ ¢
and at Wgiyen = 6. In other words, the error signal average power
must be measured M times at both Wgjyen + 6§ and at Wgjyen - 67/ M
will be determined by the accuracy requirements of the particular
application. Therefore, DSD algorithm requires 2M error signal

average power measurements per tap per iteration.
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In the DSD algorithm, once the gradient has been approximat-
ed (via equation 70) by the method of symmetric differences it is
substituted into the defining equation (equation 71) for the method

of steepest descent and a new set of tap weights are calculated.
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LEAST MEAN SQUARE (IMS) ALGORITHM

In the IMS or Widrow's algorithm it is assumed that the adap-
tive filter is an adaptive linear combiner (see Figure 9). If
data are acquired and input in parallel to an adaptive linear
combiner, the structure in Figure 9a is used. For serial data -
input the structure in 9b 1is used. Note that Figure 9b is just a
tapped delay line or transversal filter. It is further assumed
that a "desired" response signal is available. These two assump-
tions were not made for the DSD algorithms. So DSD is more
general than LMS, i.e., it is not tied to a single filter struc-
ture. IMS is only applicable to the adaptive linear combiner.

In the LMS algorithm, each of the partial derivatives in
equation 70 can. be estimated by assuming that the mean square
error (MSE) can be estimated by a single measurement of the error,
i.e.,

MSE = si (73)
where e = single measurement of the error at the kth iteration.
Equation 73 is the key assumption in the LMS algorithm. Substitut-
ing equation 73 into equation 70 results in:

Vie=| a(e2 ) a(eh ) a( e2 )

, p ey ———— (74)
g 3w, Wy,

where Vi is the gradient of the MSE performance surface at the kth

iteration point.

asi dsi - deg _ 2ex  dey (75)

aWi dsk dWl' dWi
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Sinceé an adaptive linear combiner filter structure was as-
sumed, this implies that:

N _
CK = dk -iEOin Wki (76)

where Xyi = signal at tap i during the kth iteration

Wyxi = tap weight at tap i during the kth iteration.

T&king the derivative of equation 76 implies

d@k

‘ = =Xxi (77)
dwki
In equation 77, in ordér to be consistent with equation
75, wé will change Xgj to Xj and Wy; to Wj. Equation 77 then

“becomés:

d&k
- = -Xy (78)

Substituting equation 78 into equation 75 gives:

2
aek

= -ZEkXi (79)
W

Substituting equation 79 into equation 74 gives:

-

Vi = [-26x X, —2&x X1, ..., —2ex Xpl = 26Xy (80)

-

where Xy = [Xo X3

-

Xn], i.e., Xx is a vector representing

4

the tap values at the kth iteration.

The method of steepest descent is defined by equation 71:
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- -

Wi+ = W + 1 (-Vy) (71)
Substituting equation 80 into equation 71 gives:

- -+ -

Wiy = Wi + 28 £xXy (81)
‘Equation 81 is the IMS algorithm.

The LMS algorithm is very easy to compute, and, given the
right hardware, it can be done very quickly. It does not require
off-line gradient estimation or repetitive error measurements as in
the DSD algorithm. 1In addition, for a given iteration, all of the
signal values Xo, Xy, +-., Xp) at the individual taps can in
theory be measured in parallel at the same time. This allows a
parallel measurement of the gradient (via equation 80). This is
in contrast to the DSD algorithm where each partial derivative
(d(MSE) / dW;) must be measured sequentially in order to compute
the gradient via equation 70. Thus the LMS algorithm is potential-

ly much faster than the DSD algorithm.




RANDOM SEARCH ALGORITHM

So far, two adaptive algorithms ‘have been considered: Least
Mean Square {LMS) and Differential Steepest Descent (DSD). IMS

adapts faster than DSD. LMS does, however, require knowledge of

the signal value at each tap of the programmable transversal filter

(PTF). This requirement adds additional complexity to the adaptive

filter. An auxiliary PTF has to be added to the adaptive filter.
The tap signal values are measured on the auxiliary PTF so as not
to interfere with the operation of the "main" PTF. DSD is more
general than IMS, but it requires that all the partial derivatives
of mean square error with respect to the weights (3 (MSE) / dW;) be
measured (sequentially). 1In addition, the MSE must be measured a
number of times to insure accuracy. Random search algorithms do
not require knowledge of the signal at each tap of thé PTF as does
IMS. Nor do they require measurement of d(MSE) / dW; as does DSD.
Random search algorithms tend to be slower than LMS, but faster
than DSD. DSD, however, will outperform random search algorithms
in terms of certain performance measures that are beyond the scope
of this report. Random search algorithms are useful when LMS
cannot be applied, i.e., when the adaptive filter is not an adap-
tive Ilinear combiner or PTF or when its complexity is not "afford-
able".

One of the most efficient random search algorithms is the
Linear Random Search (LRS) algorithm. In LRS: "a small random
change Uk is tentatively added to the weight vector at the begin-

ning of each iteration. The corresponding change in mean square
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error performance is observed. A permanent weight vector change,
proportional to the product of the change in performance and the
initial tentative change, is then made."?

The new weight vector generated by the LRS algorithm is

given by

Wieey = W + 0 (€ (W) - € (Wx + pg) 1 ek (82)

where:

Bk is a random vector.

{ (Wy) is an estimate of mean square error at W = Wy based on

N samples. -

»~

§ (W + pg) is an estimate of mean square error at W = Wi + py

based on N samples.

i is a design constant affecting stability and rate of adaptation.
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PTF_HARDWARE IMPLEMENTATION

Although the primary purpose of this report is to describe the
theoretical principles of adaptive noise canceling, this section
will be devoted to a description of a SAW device implementation of
a PTF.

"Several programmable SAW filters have been reported in the
literature.10-13 Most are used for match filter operation. A
SAW/FET approach demonstrated 50 MHz of bandwidth centered at 150
MHz. However, tap control range was limited to 16 dB and single
tap insertion loss was 80 dB.14 A monolithic GaAs approach in
which the SAW and the FETs are implemented on the same substrate
has demonstrated 58 dB dynamic range at 500 MHz over a 50 MHz
bandwiath, >/ 16717

A promising approach suitable for use in an adaptive noise
canceler, is a hybrid programmable transversal filter (HPTF).16,17
All programmable transversal filter designs reported to date are
severely limited by poor tap weight control range (which limits
filter sidelobe performance) and poor dynamic range (which limits
sensitivity). The HPTF solves both of these problems by combining
a LiNbO; SAW device for high dynamic range with GaAs dual-gate FETs
for high tap weight control range. Measured tap weight control
range (70 dB) and dynamic range (85 dB over a 100 MHz bandwidth)
are high znough to meet many system requirements.

"The HPTF consists of a tapped SAW delay line whose output
electrodes are connected to an array of tap weight control dual-

gate FETs (Figure 10). The signal is applied to an input trans-
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ducer, which generates a surface acoustic wave that propagates
down the substrate. An array of output transducers transforms this
acoustic wave back into electrical signals that are delayed copies
of the original input. Each output transducer is connected to the
input (gate-1) of a dual-gate FET (DGFET) tap weight control ampli-
fier. The tap weight is controlled by gate-2 voltage. The DGFET
outputs (drains) are connected to a common current summing bus.
The transversal filter can now be identified by the process of
shift, multiply and sum. Negative tap weights are generated with a
second DGFET array whose output is inverted by an external differ-
ential amplifier. This alleviates the need for an invertor at each
tap.nl6,17

The maximum power handling capability of an HPTF is limited
by the power that can be safely applied to the SAW input trans-
ducer (about +20 dBm).

Typically, when used either as a bandpass or notch filtér, an
HPTF can reduce interfering signals by 40-50 dB. A single tap
weight on the HPTF can be changed in approximately 1 microsecond.
To change an entire set of tap weights to a second set will usually
take much longer. A 1l6-tap HPTF has 16 weights to be changed. If
this is done serially, then the single tap switching time of 1
microsecond must be multiplied by 16. 1In reality, a 128 tap filter
will be needed. So a 1 microsecond switching time per tap must be
multiplied by 128. 1In addition, a controller must address and
transfer the tap weights to the HPTF. The transfer time perxr

tap could be much larger than the single tap switching time. If

the HPTF is included in an adaptive noise canceler, then a number
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of tap weight sets will have to be transferred from the controller
to the HPTF. The output power of the HPTF will have to be measured
and transferred to the controller.

If Widrow's algorithm is used, the signals on each tap have to
be measured and transferred to the controller. For each tap, the
controller will then have to calculate a new weight. The speed of
the calculation will depend on the speed of the controller. All
this overhead implies a much longer time to achieve adaptive con-
vergence (in an adaptive noise canceler) than to simply switch a
single tap weight.

It is expected that a 128-tap HPTF type filter will be able
to achieve 30 dB of filtering (in an adaptive noise canceler
configuration) in approximately 1 millisecond. A 128 tap HPTF
type filter is currently being developed for ETDL by Texas Instru-

nents under Contract No. DAALO1-88-C-0831.
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CONCLUSIONS

ffhe theoretical principles developed within this report (i.e.,
the mathematical structure of the autocorrelation matrix R, the
cross~corr=lation vector P, and the Wiener or optimal weight vector
W*) imply that adaptive noise canceling is a viable method of
separating weak and strong signals. .
If both the intended and interfering signals are narrow-band, \
then an adaptive noise canceler with a single input is the appro-
priate filter structure. This is because, as shown in the "Analy-
sis of an Adaptive Noise Canceler with a Single Input" section, the
optimal weight vector W* will be dominated or determined by the ]
strong interferer. This will cause the programmable transversal
filter (PTF) to form a bandpass around the strong interferer, pass
the interferer, and reject the intended signal. The output of the
PTF (the filtered interfering signal) is then subtracted from the
signal plus interference at the output power combiner and yields
the intended signal.
For separating narrow-band and random wide-band signals, the
adaptive noise canceler must be configured as an adaptive line

enhancer, As was shown in the "Analysis of an Adaptive Line

&

Enhancer" section, an appropriate delay before the PTF in the ALE
wilil cause a passband to appear (in the PTF frequency response
curve) around the narrow-band signal. Most of the random wide-band
signal will then be filtered out. The Yresulting narrow-band signal

will be subtracted from the sum of poth signals (at the output
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power combiner). Tre output of the combiner is the wide-band
signal. In this way signal separation is achieved.

The choice of an adaptive algorithm for an adaptive noise
canceler depends on several factors. If adaptation time is most
important, then Least Mean Squares (LMS) should be chosen. If
simplicity and hardware costs are the driving factors, then a
random search algorithm such as the Linear Random Search (LRS)
should be chosen. If the adaptive filter is not an adaptive linear
combiner or programmable transversal filter, then the Differential
Steepest Descent (DSD) algorithm or a Random Search Algorithm would
be appropriate choices since neither of these algorithms assume a
transversal filter structure for the adaptive filter in the ALE

(LMS algorithm does assume that the adaptive filter is a transver-

sal filter).
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